Different responses of normal cells (red blood cells) and cancer cells (K562 and K562/Dox cells) to low-dose 137Cs gamma-rays

BENJAMAPORN SUPAWAT1,2, PANUMAS HOMNUAN1, NATTHAWAN KANTHAWONG1,
NIYADA SEMRASA1, SINGKOME TIMA3, SUCHART KOTHAN1,2,
CHATCHANOK UDOMTANAKUNCHAI1 and MONTREE TUNGJAI1,2

1Department of Radiologic Technology; 2Center of Radiation Research and Medical Imaging, Department of Radiologic Technology; 3Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

Received July 31, 2020; Accepted January 15, 2021

DOI: 10.3892/mco.2021.2236

Abstract. High-dose radiation is deleterious to cells or tissues. However, the health risks of exposure to low-dose radiation remain unclear. The present study aimed to investigate the biological responses of low-dose gamma-ray in vitro exposure to normal red blood cells (RBCs) and erythroleukemia (K562 and K562/Dox) cancer cells. Cells were given a low dose of 0.03, 0.05 and 0.1 mGy of 137Cs gamma-rays (at a dose rate of 0.001 Gy/min) under in vitro conditions. Cells exposed to 0 Gy served as controls. Hemolysis and reactive oxygen species (ROS) were measured in exposed RBCs following exposure to low-dose gamma-rays. In addition, complete blood count (CBC) parameters were determined in irradiated whole blood. For irradiated K562 and K562/Dox cancer cells, ROS and mitochondrial activity were measured at 0, 30, 60 and 120 post-irradiation times. The results showed no change in the percentage of ROS and hemolysis in irradiated RBCs. The data indicated no perturbation in the CBC parameters in irradiated whole blood. By contrast, statistically significant dose-dependent increases in the percentage of ROS and decreases in the mitochondrial activity in the K562 and K562/Dox cancer cells were observed from 0 min up to 120 min post-irradiation. These findings concluded that there were differences in biological responses in normal cells (RBCs) and cancer cells (K562 and K562/Dox) to low-dose gamma-rays when cells were irradiated under in vitro conditions.

Introduction

It is well known that a high dose of radiation is deleterious to cells or tissue (1-4). However, the health risks of exposure to low-dose radiation remain unclear. Several researchers have studied the biological response of normal cells or tissue to low doses of radiation using various biological endpoints such as neoplastic transformation, chromosome or DNA damage and immune function (5-17). In addition, several studies investigated the biological response of cancer cells or tissue to low doses of radiation using biological endpoints such as cell cycle and cell death (18-20). These studies showed differences in the biological response of normal and cancer cells or tissues to low dose radiation. Nonetheless, the limitation of the previous data on the response of normal and cancer cell or tissue to low-doses radiation is radiation doses in the range of centi Gray (cGy). Hence, the present study investigated the different responses of normal cells (blood cells) and cancer cells to low dose gamma-rays in the milli Gray (mGy) range.

These current studies focused on the four endpoints of biological responses that are recognized to be associated with oxidative stress induced by radiation. These biological responses are reactive oxygen species (ROS) levels, mitochondrial activity (which represents mitochondrial function), hemolysis (which represents plasma membrane integrity in red blood cells [RBCs]) and complete blood count (CBC). The focus was on ROS levels since it radiation (both low- and high-dose radiation) generates free radicals including ROS, resulting in oxidative damage in cells or tissues (21,22). Oxidative stress is a disturbance in the balance between the yields of free radicals including ROS and antioxidant defenses (23). Typically, oxidative damage in cell or tissue induces mitochondria dysfunction or lipid peroxidation in plasma membranes (21,24-27). Mitochondrial dysfunction and plasma membrane damage is known to be involved in mitochondrial activity and red blood cell hemolysis, respectively. Moreover, the abnormal deformability of RBCs was observed in conditions linked to oxidative stress (28). In addition, radiation induced deleterious effects in blood cells in irradiated whole blood when compared with non-irradiated whole blood (29).

Materials and methods

Blood samples. Blood samples (n=10) were collected from remaining normal blood test group (males; age range, 40-50 years)
In K562 cancer cells, the increases were 1.04-, 1.08- and 1.10-fold higher compared with the control at 0 min post-irradiation. In K562/Dox cancer cells, the increases were 1.04-, 1.08- and 1.10-fold higher compared with the control at 0 min post-irradiation; 1.06-, 1.11- and 1.20-fold higher compared with the corresponding non-irradiated control group. The results showed no change in the percentage of hemolysis in RBCs compared with corresponding non-irradiated RBCs (Student’s t-test; P-value = 0.11).

Effect on the percentage of hemolysis in normal RBCs. Fig. 2 shows the percentage of hemolysis in normal RBCs following in vitro exposure to various low doses of gamma-rays and in the corresponding non-irradiated control groups. The data showed no change in the percentage of hemolysis measured in normal RBCs compared with corresponding non-irradiated RBCs (Student’s t-test; P-value range, 0.61-0.87).

Effect on CBC parameters in whole blood. Table I shows the CBC parameters in whole blood following in vitro exposure to various low doses of gamma-rays. Similar to the percentage of ROS and hemolysis, this data indicated no alteration in the complete blood count in irradiated whole blood compared with the corresponding non-irradiated whole blood.

Effect of low-doses gamma-rays on blood cells

Effect on ROS in normal RBCs. Fig. 1 shows the percentage of ROS in normal RBCs following in vitro exposure to various low doses of gamma-rays and in the corresponding non-irradiated control groups. The data showed no change in the percentage of ROS in normal RBCs compared with corresponding non-irradiated RBCs (ANNOVA test; P-value = 0.11).

Effect of low-doses gamma-rays on K562 and K562/Dox cancer cells

Effect on ROS in cancer cells. Fig. 3 shows the percentage of ROS in K562 and K562/Dox cancer cells collected at 0, 30, 60 and 120 min after exposure to various low doses of gamma-rays. The data showed statistically significant dose-dependent increases in the percentage of ROS in the K562 and K562/Dox cancer cells from 0 min up to 120 min post-irradiation.

In K562 cancer cells, the increases were 1.04-, 1.08- and 1.10-fold higher compared with the control at 0 min post-irradiation; 1.06-, 1.11- and 1.20-fold higher compared with the control at 30 min post-irradiation and 1.10-, 1.17- and 1.28-fold higher compared with the control at 60 min post-irradiation. Likewise, the increase in ROS levels in exposed cells at 120 min post-irradiation were 1.17-, 1.22- and 1.29-fold higher compared with the control.

In K562/Dox cancer cells, at 0 min post-irradiation, the increases were 1.02-, 1.05- and 1.09-fold higher compared with the control at 0 min post-irradiation; 1.06-, 1.11- and 1.20-fold higher compared with the control at 30 min post-irradiation and 1.10-, 1.17- and 1.28-fold higher compared with the control at 60 min post-irradiation. Likewise, the increases in ROS levels in exposed cells at 120 min post-irradiation were 1.17-, 1.22- and 1.29-fold higher compared with the control.
with the control; at 30 min post-irradiation, the increases were 1.03-, 1.05- and 1.11-fold higher compared with the control and at 60 min post-irradiation, the increases were 1.04-, 1.05- and 1.11-fold higher compared with the control. Likewise, the increase in ROS levels in exposed cells at 120 min post-irradiation were 1.03-, 1.06- and 1.11-fold higher compared with the control.

Effect on mitochondrial activity in cancer cells. Fig. 4 shows the mitochondrial activity in K562 and K562/Dox cancer cells, collected at 0, 30, 60, and 120 min following exposure to various low doses of gamma-rays. The results showed statistically significant dose-dependent decreases in the mitochondrial activity of K562 and K562/Dox cancer cells from 0 min up to 120 min post-irradiation.

In K562 cancer cells, at 0 min post-irradiation, the decreases were 0.98-, 0.89- and 0.83-fold lower compared with the control; at 30 min post-irradiation, the decreases were 0.96-, 0.87- and 0.81-fold lower compared with the control, and at 60 min post-irradiation, the decreases were 0.94-, 0.84- and 0.79-fold lower compared with the control. Likewise, the decreases in the mitochondrial activity of exposed cells at 120 min post-irradiation were 0.89-, 0.83- and 0.75-fold lower compared with the control.

In K562/Dox cancer cells, the fold decrease in the mitochondrial activity were dose-dependent at all four timepoints relative to the corresponding controls: 0.99, 0.92 and 0.83 at 0 min post-irradiation; 0.98, 0.88 and 0.82 at 30 min post-irradiation; 0.96, 0.85 and 0.79 at 60 min post-irradiation and 0.94, 0.83 and 0.76 at 120 min post-irradiation.

Table I. Complete blood count parameters in whole blood following *in vitro* exposure to various low doses of gamma-rays.

<table>
<thead>
<tr>
<th>Radiation dose (mGy)</th>
<th>0 mGy</th>
<th>0.03 mGy</th>
<th>0.05 mGy</th>
<th>0.1 mGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Mean ± SE</td>
<td>Mean ± SE</td>
<td>Mean ± SE</td>
<td>Mean ± SE</td>
</tr>
<tr>
<td>RBC (10⁶/µl)</td>
<td>2.86±0.36</td>
<td>2.40±0.05</td>
<td>2.30±0.14</td>
<td>2.20±0.14</td>
</tr>
<tr>
<td>HCT (%)</td>
<td>24.58±3.22</td>
<td>20.90±0.55</td>
<td>20.02±1.16</td>
<td>19.14±1.28</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>85.93±2.88</td>
<td>87.20±2.53</td>
<td>87.20±2.58</td>
<td>86.98±2.51</td>
</tr>
<tr>
<td>RDW-SD (fl)</td>
<td>40.05±1.32</td>
<td>41.76±2.08</td>
<td>41.68±2.02</td>
<td>41.58±1.87</td>
</tr>
<tr>
<td>PLT (10^3/µl)</td>
<td>77.75±11.24</td>
<td>105.00±21.10</td>
<td>106.40±20.60</td>
<td>107.00±21.34</td>
</tr>
<tr>
<td>PDV (fl)</td>
<td>11.88±0.83</td>
<td>11.52±0.99</td>
<td>11.34±0.71</td>
<td>11.08±0.81</td>
</tr>
<tr>
<td>MPV (fl)</td>
<td>10.65±0.29</td>
<td>10.04±0.44</td>
<td>10.10±0.39</td>
<td>10.08±0.36</td>
</tr>
<tr>
<td>PCT (%)</td>
<td>0.08±0.01</td>
<td>0.10±0.02</td>
<td>0.11±0.02</td>
<td>0.10±0.02</td>
</tr>
<tr>
<td>WBC (10^³/µl)</td>
<td>4.03±0.32</td>
<td>4.12±0.24</td>
<td>4.15±0.37</td>
<td>4.05±0.37</td>
</tr>
<tr>
<td>NEUT (%)</td>
<td>62.63±3.95</td>
<td>59.42±3.63</td>
<td>59.06±3.79</td>
<td>58.14±3.45</td>
</tr>
<tr>
<td>LYMPH (%)</td>
<td>28.75±3.82</td>
<td>30.32±3.36</td>
<td>30.86±3.38</td>
<td>31.60±3.31</td>
</tr>
<tr>
<td>MONO (%)</td>
<td>5.73±0.60</td>
<td>6.84±0.16</td>
<td>6.48±0.25</td>
<td>6.86±0.24</td>
</tr>
<tr>
<td>EO (%)</td>
<td>2.73±0.36</td>
<td>3.28±0.97</td>
<td>3.46±1.10</td>
<td>3.36±1.02</td>
</tr>
<tr>
<td>BASO (%)</td>
<td>0.18±0.06</td>
<td>0.14±0.06</td>
<td>0.14±0.06</td>
<td>0.07±0.04</td>
</tr>
</tbody>
</table>

RBC, red blood cell; HCT, hematocrit; MCV, mean corpuscular volume; RDW-SD, red cell distribution width standard deviation; PLT, platelets; PDW, platelet distribution width; MPV, mean platelet volume; PCT, plateletcrit; WBC, white blood cell; NEUT, neutrophil; LYMPH, lymphocyte; MONO, monocyte; EO, eosinophil; BASO, basophil; SE, standard error.
Discussion

The dose ranges of the gamma-rays damage to normal RBCs *in vitro* were reported in IAEA-TECDOC-934 document. This document reported that examining the nature of the membrane injury in gamma irradiated RBCs in the dose range 2 to 200 Gy, it was concluded that the sulphhydryl group was the major target in radiation-induced alteration of sodium and potassium ion permeability. In addition, an *in vitro* study on the effect of X-rays on movement of sodium in human RBCs, showed a loss of sodium/potassium ion balance in RBCs, following radiation doses in the range of 8.9 to 89 Gy. This phenomenon was due in part to discontinuation of membrane integrity (32). However, those radiation dose ranges are rather highly and most that dose find in radiation accident or radiotherapy. Whereas radiation dose in low-dose range that find in diagnostic radiology or nuclear medicine examination is still challenges. Our previous studies investigated biological responses to radiation after blood tissue was exposed to low dose X-rays in an *in vitro* system. The results showed that hemolysis and osmotic fragility in irradiated human RBCs did not significantly differ from non-irradiated RBCs. The results also showed that low-dose
X-rays did not induce a change in mitochondrial membrane potential, number of apoptotic cells and perturbation of the cell cycle in irradiated human lymphocytes compared with non-irradiated lymphocytes. The authors suggested that there were no deleterious effects of low-dose X-rays when blood tissues were exposed in an in vitro system (30,31,33).

The present data demonstrated no changes in ROS levels and percentage of hemolysis of RBCs in irradiated whole blood when compared to the non-irradiated control groups. In addition, the CBC values in whole blood following in vitro exposure to low-dose gamma-ray groups have not differed compared with the non-irradiated control groups. The current findings suggested that low-dose gamma-ray do not induce any harmful effects to human blood cells. It should be noted that the current results are in agreement with our previous studies (30,31,33) and El-Shanshoury et al (34). These authors showed that statistically significant alteration in white blood cell, red blood cell and platelet count did not occur in rats after exposure to low-dose gamma radiation when compared with non-irradiated groups (34). Conversely, studies have demonstrated radiation-induced red blood cell damage such as increment of hemolysis and lipid peroxidation in RBCs. However,
those studies on irradiated RBCs involved high dose gamma radiation (27,35-37). It could be suggested that, depending on radiation dose, there are different responses in normal cells (red blood cells) between low- and high-dose radiation.

By contrast, normal cells (red blood cells) with low dose gamma irradiation caused significant increase in ROS levels in both irradiated K562 and K562/Dox cancer cells at all harvest time points, whereas the mitochondrial activity was decreased in both irradiated K562 and K562/Dox cancer cells at all harvest time points relative to non-irradiated cells. ROS and cell type (normal cells (RBCs) vs. cancer cells (K562 and K562/Dox)) were also compared. In the present study, K562 and K562/Dox exhibited sensitivity to low dose gamma radiation more than RBCs. Cancer cells show a wide range of sensitivity to radiation with different radiosensitivities. Low-dose hypersensitivity is found in various cancer cell lines upon receiving radiation (38-41). In addition, Dai et al investigated low dose hyper-radiosensitivity in the cancer cell line A549 irradiated with 40Co gamma-rays at doses of 0-2 Gy. The results showed that A549 cells exhibited low dose hyper-radiosensitivity. The type of death observed in cells was mainly apoptosis (18). Enns et al studied the response of three cancer cell lines, A549, T98G and MCF7, exposed to 0-200 cGy radiation doses from 137Cs source gamma-rays. The authors found that hypersensitivity occurred in the A549 and T98G cancer cells, but not in MCF7 cancer cells at radiation doses <50 cGy. The authors also suggested that hyper-radiosensitivity was involved in p53-dependent apoptosis (19). Short et al (20) investigated low dose hyper-radiosensitivity in the cancer cell lines T98G and U373 irradiated with X-rays. The results showed that hyper-radiosensitivity was observed in both T98G and U373 cancer cells. The authors also demonstrated that low-dose hyper-radiosensitivity depended on the cell cycle phase (20). Therefore, the present results agree with the hypothesis that cancer cell lines exhibit low-dose hypersensitivity to radiation.

ROS have been shown to play important roles in cell proliferation and cell death (42,43). Typically, ROS are produced in cells upon cells that are exposed to radiation in which ROS is mediated from the indirect effects of low linear energy transfer radiation as gamma-rays (44,45). A study has demonstrated that radiation potently induced cancer cell death via generation of ROS and oxidative response in cell organelles such as the mitochondria (46). In addition, Walsh et al performed mitochondrial staining with tetramethyl rhodamine ethyl ester in live MCF-7 and A549 cancer cells after exposure to 55 MeV carbon ions or 3 MeV proton radiation. The results showed that tetramethyl rhodamine ethyl ester levels were decreased in the mitochondria. The authors suggested that there was an induction of mitochondrial membrane depolarization after cancer cells received either protons or carbon ions (47). Leach et al had shown increased DCF fluorescence in A431 cancer cells. It was found that radiation stimulated ROS production in cells after exposure to 3 Gy of 90Sr radiation source. The authors also showed transient depolarizing effects of radiation on the mitochondrial membrane potential in A431 cancer cells (48). However, ROS is not only generated in cells by high dose radiation, but also by low-dose radiation, resulting in a number of deleterious effects on cells (21). Hence, the present study hypothesized that low-dose gamma-rays might induce increments of ROS in K562 and K562/Dox cancer cells, resulting in occurrence of oxidative stress that plays a role in decreasing mitochondrial activity.

The current study showed the biological responses in K562 and K562/Dox cancer cells to low-dose gamma-rays but did not show that in RBCs. These findings suggested that erythroleukemia was more sensitive to low-dose gamma-rays compared with normal RBCs. In addition, the results of the current study suggested the possibility of using low-dose gamma radiation to treat erythroleukemia.

In conclusion, the current study showed the difference in biological responses in normal cells (RBCs) and cancer cells (K562 and K562/Dox) to low-dose gamma-rays when cells were exposed under in vitro conditions.

Acknowledgements

Not applicable.

Funding

This research was partially supported by Chiang Mai University (grant no. R000023314).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors' contributions

BS, PH, NK and NS performed the experiments. ST, SK and CU interpreted the data and revised the manuscript. MT conceived and designed the current study, performed the experiments, analyzed and interpreted the data, and drafted and revised the manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Blood sample collections were performed under the approved guidelines by the Institutional Committees on Research Involving Human Subjects and approval of the Faculty of Associated Medical Sciences, Chiang Mai University (approval no. AMSEC-62EM-002).

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References